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The theory presented here describes the motion of a large gas bubble rising through 
upward-flowing liquid in a tube. The basis of the theory is that the liquid motion round 
the bubble is inviscid, with an initial distribution of vorticity whjch depends on the 
velocity profile in the liquid above the bubble. Approximate solutions are given for 
both laminar and turbulent velocity profiles and have the form 

Us being the bubble velocity, U, the liquid velocity at  the tube axis, q the acceleration 
due to gravity, and D the tube diameter; q5 indicates a functional relationship the form 
of which depends upon the shape of the velocity profile. With a turbulent velocity 
profile, a good approximation to (1) which is suitable for many practical purposes is 

u, = q+ use, (2) 

V,, being the bubble velocity in stagnant liquid. Published data for turbulent flow are 
known to agree with (2), so that in this case the theory supports a well-known empirical 
result. Our laminar flow experiments confirm the validity of (1) for low liquid velocities. 

1. Introduction 
When a large volume of gas is introduced at  the lower end of a long vertical tube 

filled with stagnant liquid, the gas forms an axisymmetric bullet-shaped bubble which 
is known as a slug. The velocity Us of a slug rising steadily in stagnant liquid is a func- 
tion of g, the acceleration due to gravity, D,  the tube diameter, and p, p and u, which 
are respectively the viscosity, density and surface tension of the liquid. From dimen- 
sional analysis it follows that the Froude number Fr = Us/(gD)t is aunique function of 
Nf = g*Dgp/p and M = gp4/pu3. For a sufficiently large tube diameter it might be 
expected that the slug velocity would be independent of liquid properties and experi- 
ments do show that there is a regime in which Fr is independent of Nf and M .  This 
inertia-controlled regime specified by N, > 300 and Eo = N$M* > 100, where Eo is 
the Eotvos number (White & Beardmore 1962; Wallis 1969), is the subject of the 
present paper in which previous analysis for the stagnant-liquid problem is extended 
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to include the effect of liquid flow on the slug velocity. The topic has important in- 
dustrial applications and has been studied by a number of investigators, for example 
Behringer (1936), Griffith &Wallis (1961), Nicklin, Wilkes & Davidson (1962), Zuber & 
Findlay (1965) and Nicolitsas & Murgatroyd (1968). 

Our purpose is primarily to give a theory describing the effect of liquid motion in 
the tube on the slug velocity and shape. The liquid velocity profile far above the rising 
slug is particularly important: most of the published data are for turbulent velocity 
profiles, partly because this is the most important case industrially; to get a wider 
variety of profiles we carried out experiments with laminar motion above the rising 
slug. 

Previous workers correlated data using an equation of the form 

u, = c, 8 + C2(gD)3, (1 .1)  

the essential idea behind which is to isolate the effect of the mean upward liquid 
velocity 0 from that of the other variables; C, and C, are coefficients. Nicklin et al. 
(1962) deduced that, with turbulent liquid flow, C, is very close to V,/g, where V ,  is 
the maximum (centre-line) velocity in the flowing liquid; thus an alternative to (1 .1 )  is 

v, = v , + c z ( g m  (1.2) 

and it was suggested that C, = 0.35, as for a slug rising in stagnant liquid (Stewart & 
Davidson 1967). 

Slight differences in the values of C, and C, given by various authors led Nobel 
(1972) to doubt whether the forms of ( 1 . 1 )  and (1.2) are appropriate; in particular the 
relation between C, and &/a was questioned. He proposed more complicated equa- 
tions without, however, considering the detailed dynamics of the flow. 

Our theory, for both laminar and turbulent liquid flow, can be summarized by 
writing 

u, = v, + (go)* $ ( U , / ( g m ,  (1.3) 

where $ indicates a functional relationship. The theory thus provides strong support 
for the deduction by Nicklin et al. (1962) for turbulent liquid flow leading to (1.2). 
By comparing (1.3) with ( 1 .  i ) ,  C, and C, are predicted. The theory also shows that there 
are circumstances in which the linearized result (1.2) is an acceptable substitute for 
the full solution (1.3), and (1.2) with C, = 0.35 is a good approximation for many 
practical cases. There is excellent agreement of turbulent theories with experimental 
data. For laminar flow, comparison between theory and experiment is more difficult, 
but our experimental data are in reasonable agreement with predictions. 

2. Theory 
We argue that the flow relative to the slug rising in a moving liquid can be treated 

as that of an inviscid liquid possessing vorticity. Such analysis develops that of 
Dumitrescu (1943) and Layzer (1955), who assumed irrotational motion round a slug 
rising in stagnant liquid. The neglect of viscosity in analysing these flows can be 
justified by considering the convection and diffusion of the vorticity generated by 
the motion of the slug. Figure 1 shows the motion as seen (a )  by a fixed observer, and 
( b )  an observer moving with the slug. This motion may be compared with that due 
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(0) ( b )  
FIGURE 1. Gas slug rising in flowing liquid: (a )  as seen by a fixed observer; ( b )  as seen by an 

observer moving with the slug. The thickening lines indicate developing boundary layers. 

to a slug rising in stagnant liquid. The fundamental difference between the two cases 
is that for the motion in figure 1 there is a relative movement between the liquid and 
the tube wall far upstream of the slug and this relative movement generates the 
velocity profile, which can be regarded as a boundary layer filling the tube. The velo- 
city profile remains unchanged until the liquid approaches t,he slug nose, where there 
are two fresh sources of vorticity provided by the free surface and by the change in 
relative motion between liquid and wall. 

The boundary layers arising from these sources are indicated with exaggerated 
thickness in figure 1 ( b ) .  Both layers will be thin provided the slug Reynolds number 
Re, = pU,D/,u is high, and we observe from 9 1 that in the inertia-controlled regime 
in a stagnant liquid Re, = Fr N, > 0.35 x 300 = 105. The growth of these layers is in- 
hibited by the acceleration of the liquid round the slug nose, which also prevents 
separation. 

Because these boundary layers are thin, the pressure distribution can be well 
represented by an irrotational flow when the slug rises in stagnant liquid (Dumitrescu 
1943; Layzer 1955; Collins 1968). When the slug rises in flowing liquid, the pressure 
distribution can likewise be represented by a rotational flow which possesses a pre- 
scribed distribution of vorticity upstream. In the latter case, the idea is that the 
primary effect of viscosity is to generate the initial velocity profile far upstream and 

17-2 



500 R. Collins, F .  B. de Moraes, J .  F .  Davidson and D .  Harrison 

that the subsequent motion is that of an inviscid liquid with initial vorticity. The 
theoretical basis for such an investigation is well established (Lamb 1932; Batchelor 
1967), and there is a history of successful applications in other fields, for example in 
analysing flows in the blade rows of axial compressors and turbines (Hawthorne 1967). 

For axisymmetrical motion we use cylindrical co-ordinates (x, r,  0) with the origin 
located at the slug nose as indicated in figure 1 (b) .  It is more convenient to develop 
the analysis using the tube radius b rather than the diameter D .  In  terms of Stokes's 
stream function $, the local velocity components u and v in the x and r directions are 
given by ru = -a$/ar and rv = a$/ax. Lamb (1932, p. 245) shows that for steady 
motion 

The function f ($) is arbitrary and defines the vorticity distribution far upstream of 
the slug where $ is independent of x. The exact solutions considered here correspond 
tof($) = constant andf($) = k ( $ + C ) ,  where k and C are constants. 

In  solving (2.1), the boundary conditions to be satisfied in all cases are: 
( a )  lif = 0 on the sIug surface, as yet undefined; 
(b) lif = constant on the tube wall, where 7 = r/b = 1 ;  
( c )  far upstream of the slug $ must be a given function of 7, determined by the velo- 

( d )  the gas pressure in the slug is constant so the static pressure in the liquid must 

Bernoulli's equation in this rotational flow takes the form 

city profile in the liquid; 

also be constant along the slug surface. 

PIP + &q2 + SbE = Po($)lP, 

where q2 = u2 + v2, t = x/b andPo is the stagnation pressure. Hence at  the slug surface, 
(d )  requires that 

Following the procedure employed for stagnant liquid (Dumitrescu 1943) and when 
the upstream liquid is rotating about the tube axis (Collins & Hoath 1973) the left- 
hand side of (2.2) is expanded in a Taylor series about the origin to give 

q2 + Bgbc = 0. (2.2) 

q2 + 2965 = ((q2 + 2gb5);) 7'/2! + ( (q2  + 2gbE)fP) 7*/4! + . . . = 0. (2.3) 

Here primes denote derivatives with respect to 7 of a quantity evaluated at  $ = 0 and 
considered as a function of 7 only and the suffix 0 denotes evaluation at the origin. 
From symmetry q 2  and E are even functions of 7 and hence only derivatives of even 
order appear in the expansion. An exact solution to the free-boundary problem would 
make all coefficients zero in (2.3). 

Results for stagnant liquids (Davies & Taylor 1950; Collins 1966; Batchelor 1967) 
show that the slug velocity is predicted with remarkable accuracy by using only the 
fh t  term of (2.3), thus satisfying the boundary condition ( d )  near the stagnation point. 
This procedure will be follow4 here, when 'the liquid has vorticity, and we shall 
present single-term approximations satisfying only the first term of (2.3). 

This term requires that (u2 + vz),," + 2gbEi = 0 and, since the origin of the co-ordinates 
is a stagnation point and the slug and liquid flow are symmetrical, then 

uo = vo = u; = 6; = 0. 
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Satisfaction of 
differential Satisfaction of 

Model no. solution (2.1) condition 

Laminar 4.1 Separation of variables, Satisfies first term of (2.3) ; 

Laminar 
Turbulent 5.2 

Section Type of equation free-surface boundary 

Exact 
A {Turbulent 5.1) single term valid near apex 

{ z;:ximate} region near apex 
As A, but valid over a larger 4’2} Dipole solution 

TABLE 1. Theoretical models. 

It follows that 
TI; = (-gbti)J = (gbZ/a)J, 

where a = - b/ci denotes the radius of curvature of the slug boundary at the stagna- 
tion point and an explicit expression for the slug velocity is obtained by rewriting 
(2.4) in the form 

u, - v, = (gb)J/[(a/b)J 4/(u,  - &)I. (2.5) 

Equation ( 2 . 5 ) ,  which, though derived from only the first term of (2.3), is exact, 
shows that the slug velocity may be deduced from two features of the flow at the 
stagnation point, namely 

(i) the radius of curvature of the nose of the slug, represented by the dimensionless 
ratio a/b, 

(ii) the velocity derivative at  the stagnation point, represented by the dimension- 
less ratio .;/(?&- q). 

The objective of the approximate model solutions considered here is to describe the 
geometry of the free surface as closely as possible so that a/b and w ; / ( V ,  - V,) may be 
deduced from the models for use in (2.5). 

Table 1 summarizes the results in this paper. Two types of solution of (2.1), desig- 
nated models A and B, were obtained. Model A is based on separation of variables 
and uses the first term in a series for $, following the method of Layzer (1955). Model 
B uses the method of Collins (1967), which is based on a dipole solution with a dispos- 
able parameter chosen so as to match the flow near the slug nose with a one-dimen- 
sional model of the flow downstream. Models A and B both constitute first approxima- 
tions in the s0nse that they eliminate only the first term in (2.3), but model B produces 
a smaller error in the pressure distribution because it describes the real slug geometry 
in the vicinity of the stagnation point more closely. In table 1, the adjectives ‘laminar ’ 
and ‘turbulent ’ indicate the form of v&ocity profile far upstream of the slug: ‘laminar ’ 
implies a parabolic velocity profile, ‘turbulent’ a profile of logarithmic or similar 
form as found in pipes with steady flow at high Reynolds number. 

3. Laminar profiles 
Iff($) = 2V,/b2 in (2.1), then the vorticity distribution is linear in the flow far 

ahead of the bubble, so that the velocity profile there is of parabolic form. Exact 
solutions of (2.1) which are appropriate for problems in which the fluid is contained 
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within a tube and which will generate slug-like shapes (Lai 1964), are obtained by sepa- 
ration of variables, which gives 

@ = lUb2ya-1Ub272(1-1 27 2 - CV, - uc) 2 Tbz(di/ki) exp ( - ki E )  Jl(kiT)* 2 s  2 c  (3.1 ) 
i= l  

In (3.1), ki is the ith zero of the first-order Bessel function J1 and the coefficients di 
require determination. The perturbation to the liquid flow which is represented by 
the series in (3.1) is in fact irrotational, and (3.1) differs from those solutions used by 
Layzer and Dumitrescu for a slug rising in stagnant liquid only in so far as it includes 
the rotational second term, which describes the velocity profile in the flowing liquid. 

From (3.1), the velocity components are given by 

00 

u = -V,+U,(l-r2)+(U,-U,) Z diexp(-kiE)Jo(kiq), (3.2) 
i= 1 

and (3.3) 

Note from (3.2) that u + V,( 1 - 7 2 )  - V, when E -+ + 00, confirming that the absolute 
velocity u+ V, is parabolic far upstream. The origin of the co-ordinates is set at the 
stagnation point, so that 

00 

C di = I .  (3.4) 
i=l 

The surface of the slug, which will correspond to the stream surface @ = 0 in (3.1), 
then follows as 

(3.5) 

from which the radius of curvature at the nose of the slug, denoted by a, may be 
shown to be given by 

q = - l U  2 c 7 3 /( V, - u,) + 2 5 (di/ki) exp ( - ki 5) ~ 1 ( k i  71, 
i=l  

a/b = [4 2 = 1  5 diki]/[ i=l dik:+4GT,/(U,-U,)]. 

For the present solution, representing the parabolic velocity profile, v is given by 
(3.3) and the radius of curvature by (3.61, so that (2.5),whichrelates the slug velocity 
to the geometry of the flow, gives 

Only the positive real root of this cubic equation for V, - V, is of interest here, giving 

where 
(3.9) cos 4 arccos s when s < 1, 

(2/3*) cosh Q arccosh s when s 2 1.  (3.10) 
@(s) = 
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Asymptotic expansions for @(s) for subsequent use are 

... for sg 1, (3.11) 

(3.12) 

In  principle, any desired number of the coefficients d ,  may be evaluated and hence 
the slug shape and velocity determined to any level of approximation. Even for the 
stagnant-liquid problem, however, the complexity is such that no more than three 
terms have been found, eliminating the first two coefficients in (2.3) and producing 
a second approximation (Dumitrescu 1943). The present problem is further compli- 
cated since the coefficients d,  will in general be functions of U,/ (gb)a;  it may be con- 
cluded from this that the result in (3.8) has the general form 

v, = v, + (9bP 4 ( W g b P ) .  

@(s) N ( l+s /3 t+  
(2s/33)f + +( 2s/38)-4 + . . . for s 9 1. 

(3.13) 

We now consider approximate models of the flow. 

4. Laminar model solutions 
Theories developed for slugs and bubbles in stagnant liquids suggest that satis- 

factory descriptions of the flow can be obtained using only one term of the series 
solution (Layzer 1955; Davies & Taylor 1950), or a form of the series representing a 
single dipole (Collins 1967); laminar models A and B are based on these approaches. 

4.1. Laminar model A 

Model A contains only the first term in the series in (3.l)and hence, from (3.4), d,  = 1. 
With this choice it is possible to produce only a first approximation in the sense de- 
fined in $2,  and from (3.8) we obtain 

where k, = 3.8317 is the first zero of the Eessel function J1. Although its definition 
may appear to make 0 an awkward entity the solution in (4.1) is in fact easily eva- 
luated and in that sense it does not need simplification. Consider, nevertheless, the 
asymptotic behaviour of @ for small values of its argument, i.e. for low values of 
U,/(gb)a. From (3.11) and (4.1) 

V,  = V , ( l + 2 / k t ) + ( g b / k l ) $ +  ... = 1.13U,+O.511(gb)~+ ..., (4.2) 

retaining only the lowest-order terms. Enhancement of the coefficient of V, from its 
apparent value of unity in (4.1) will be observed. With a parabolic velocity profile, 
U = &V,, so that, in terms of the variables 0 and D, (4.2) becomes 
- 

V,  = 2*270++*361(gD)a+ ... . (4.3) 

The coefficient 2.27 agrees remarkably, though fortuitously, with Wallis's (1969, p. 
293) conjecture. The linearized form in (4.3) is in fact an excellent description of the 
full solution for a substantial range of the variable U/(gD)). 

With the liquid stagnant, (4.2) reproduces Layzer's result, V,/ (gb)a  = 0-511, where- 
as experiments are usually regarded as confirming Dumitrescu's theoretical value of 
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0.2 

I I I 1 

- - 

I 1 

0.496 (Stewart & Davidson 1967). This slight deficiency of laminar model A may be 
attributed to its overestimating the radius of curvature at the stagnation point: the 
variation of a/b with u/(gD)* is plotted in figure 2 by using, in conjunction with (4.1), 
the equation derived from (3.6), 

a/b = 4k , / (k f  + 4U,/(U,- q)). (4.4) 

Figure 2 shows that the slug nose becomes more pointed as the flow velocity 
increases. 

4.2. Laminar model B 

Dumitrescu’s solution for the stagnant-liquid problem comprised a set of second 
approximations for an arbitrary range of nose radii from a /b  = 0-5 to a/b = 0.9, A 
particular value for the nose radius, and hence the slug Froude number, was then 
selected from this set by requiring that the nose shape should merge smoothly with 
the downstream shape, which was determined from a simple one-dimensional view 
of the downstream flow. In  studying wall effects for spherical-cap bubbles, Collins 
(1967) found that results almost identical with Dumitrescu’s could be obtained 
rather more simply from an alternative form of first approximation and the extension 
of that work to the flowing-liquid problem forms model B. If we choose to write 

then in the region f > -c the irrotational perturbation to the flowing stream given 
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by the series in (3.1) may be shown to represent a dipole situated on the axis a t  the 
point [ = - c  (cf. Collins 1967). For convenience, we defme 

m 

T,,,(c) = 3 k4-ldi, 
i= l  

T,,,(c) being a particular case of the function T,,,(c) given by Collins (1967). Using 
(4.5) and (4.6) we find from (3.6) that  

from (3.7) that  
a/b = 4T2,1[T3,1+ 4q/(X- U , ) 1 - ' 7  (4.7) 

(q-q)"ggb(q-q) T3,1/TX,1-4gb&/~X,l = 0, (4.8) 

The linearized form of (4.9) for small values of the argument of Q, is 

V, = U,( 1 + 2/T3, + (gb)i Tj, 1 + . . . . (4.10) 

Note from (4.5) and (4.6) that  the asymptotic behaviour as c -+ co is T,,l --f kf- l ,  
SO that  (4.9) and (4.10) then simply reproduce (4.1) and (4.2), thus yielding laminar 
model A from laminar model B. The effect of varying c is to  change the radius of 
curvature at the nose and model B may be regarded as providing a set of first approxi- 
mations for an arbitrary range of a/b from which, in the manner of Dumitrescu, we 
may select that solution which merges with a one-dimensional model of the shape 
downstream. The result, as in his analysis, is to  select a/b = 0.75 when V, = 0, giving 
c = 0.8072, T3,1 = 25.065 and T2,1 = 4.6996. The linearized form (4.10) then becomes 

V, = 1*08q+0*49l(gb)4+ ... = 2*16D+O-347(gD)*+ ..., (4.1 1) 

which gives an excellent description of the full solution: for example when 

D/(gD)* = 2, 

the value of Us from (4.11) is about 4 yo greater than that from (4.9). Figure 2 shows 
that model B gives an improved estimate of the nose radius of curvature: a t  U, = 0 
i t  reproduces an earlier theoretical result (Collins 1967); moreover the value a/b = 0.75 
at U, = 0 is in good agreement with published experiments (Stewart & Davidson 1967) 
and, as indicated, agrees with our own experiments to be described in $6. Comparing 
models A and B, i t  is the improvement in the nose radius which gives the corresponding 
improvement in the coefficients between (4.3) and (4.1 1 ) ;  however, the small changes 
in the coefficients show that they are insensitive to geometrical deficiencies in the 
models. 

The full solution for laminar model B in (4.9) may be rewritten in terms of D and 
D to  give 

V, = 28+0*347(gD)t @,(2*398/(gD)&) (4.12) 

and (4.1 1 )  and (4.12) constitute the main results of the theory for the laminar profile. 
Comparison with results from new experiments will be discussed in § 6, where i t  will 
be shown that the theory is confirmed for low values of u/(gD)*. 

Finally, before considering the theory for turbulent profiles we recall that  laminar 
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models A and B both provide only first approximations whereas Dumitrescu’s model 
for a stagnant liquid gave a second approximation. One might consider constructing 
a second approximation for our problem by ignoring the dependence of d, on U,/(gb)*, 
as we have effectively already done in model B, and simply using in (3.8) these values 
for d,, d, and d, from Dumitrescu’s analysis. These have been recalculated by Collins & 
Hoath (1973) and found to be d, = 0.8011, d, = 0-1385 and d ,  = 0-0604. The results 
of that approach will not be cited, however, because they are virtually identical with 
those for model B .  In  any case, the effect of ignoring the dependence of d, on U,/(gb)+ 
is to make this alternative a second approximation only when U, = 0. For finite flow 
rates it reverts to being a first approximation, as are models A and B. 

5. Turbulent profiles 
Frequently used relationships for the turbulent velocity distribution such as power 

laws, the universal profile, results from Prandtl’s mixing-length theory and von 
Kbrmbn’s similarity hypothesis are unsuitable for the following analysis because they 
do not exhibit the zero velocity gradient on the tube axis which symmetry demands. 
Fortunately, equations due to Reichardt (1951) and Pai (1957) are satisfactory both 
in this respect and in their ability to  describe experimental data, but their forms are 
such that they do not allow an exact analytical solution of (2.1). A simplified theory 
employing those profiles will be given in $5.2,  but consideration is first given in $5.1 
to results from a second exact solution of (2.1) which provides rather flatter profiles 
than does the laminar theory. 

5.1. Turbulent model A 
By separating the variables and transforming the resulting equation for the radial . 
direction into Kummer’s equation, it may be shown that an exact solution of (2.1) 
satisfying boundary conditions (a) ,  (b)  and ( c )  of $ 2  and with 

f ($1 = (a2/b4) w + (b2 /4  (V, - V,)> 
is $ = (V,-U,)(b2/a)[exp(~ay2)-+ay2exp(-,&-$ay2)M(1 - v , 2 , a y 2 ) -  I], (5.1) 

where y = r / b ,  E = x/b,  and P(a) = 2(va)4. M ( A ,  B, z )  is the confluent hypergeometric 
function and v = v(a) is such that M (  1 - v, 2, a )  = 0, so that 01 is the smallest real 
positive zero of M .  The parameter a determines the shapes of the upstream velocity 
profiles, whose forms, relative to a fixed observer, are given by 

u = (V, - u,) [exp (8.) - exp (&v2)l/[exp (401) - 11 + u,, ( 5 4  

where U, is a slip velocity allowed at  the wall of the tube. These profiles are flatter 
than the parabolic profile, which in fact corresponds to a = 0, and they can be made 
to fit turbulent profiles reasonably well for small values of a, as shown in figure 3 (a) .  
Details of the solution are given by de Moraes (1977), who discusses also methods of 
assigning values to ?& by comparison with other turbulent profiles. Using (5.1) as a 
model to provide a first approximation in the sense defined in $2, it may be shown 
that from (2.5) 

and 

V, = V, +P-*( 1 + 2a/P2)* (gb)* 

U,/(gb)* = p-*(1+ 2a/P2)* ([exp (401) - 1]/401 - I)/( 1 - o/V,). 
(5.3) 

(5.4) 
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FIGURE 3. Velocity profiles. (a) -.-, turbulent model A :  __ , Reichardt, (5.14). 
(b) --, Reichardt, (5.14); ---, Pai, (5.16). 

For a given value of g/&, (5 .4)  shows that a and P(a) are determined by U,/(gb)*. 
Hence (5.3) can be written in the same general form as (3.13) and is thus again in 
agreement with the conclusion of Nicklin et al. (1962) on the role played by the centre- 
line velocity U, in determining the slug velocity. De Moraes (1977) has also shown 
that, for small values of a and U, = 0, (5.3) reproduces (4.3), the result obtained for 
laminar model A with small values of &/(gb)) ,  and, in the limit a --f 0, it reproduces 
Layzer’s result for the stagnant-liquid case. 

The advantage of a model which constitutes an exact solution of (2.1) is that the 
convection of the free-stream vorticity around the slug is correctly described. Its 
disadvantage is that the resultant velocity profiles compare favourably with experi- 
mental data only for relatively small values of a, as shown in figure 3 (a).  Turbulent 
model B, on the other hand, represents the velocity profiles very well but at the cost 
of not satisfying (2.1) exactly. 

5.2. Turbulent model B 
Consider the following modification of (3.1): 

In this equation, t ( q )  describes the rotational part of the upstream flow and $* repre- 
sents the irrotational perturbation to that stream given by the infinite series in (3.1). 

Clearly (5.5) does not satisfy (2.1) at all points in the flow, except when t ( q )  describes 
a parabolic velocity profile, but it does describe a flow which has a prescribed distri- 
bution of upstream vorticity, is conked within a tube, has a stagnation point at  the 
origin and moves around a slug-like shape. The motion represented by (5.5) is irro- 
tational on the tube axis and in the immediate neighbourhood of the stagnation point, 
as any exact solution of (2.1) must be, but it is deficient in its description of the way 
in which the vorticity is convected around the slug. In  using (5.5) the hope is that the 
result of the analysis may be as insensitive to that deficiency as are laminar models 
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A and B in respect of their deficiencies in slug geometry. Justification for this expec- 
tation is given in $5.2.1. 

The velocity profile has maximum upward velocity U, and zero velocity gradient 
on the tube axis, so that to = - 1 and t;  = 0,  the suffix 0 denoting evaluation on the 
axis. 1c.* will be taken to be the perturbation associated with a dipole as used in 
$4.2 for laminar model B. 

From ( 5 4 ,  the radius of curvature of the branch of the streamline l/r = 0 which 
forms the slug boundary may be shown to be given by 

a / b  = 4 T 2 , 1 / ( T 3 , 1 + 4 t , " q / ( & -  &)), (5 .6)  

and the cubic equation which arises for U, - U, is then 

This cubic is similar to (4 .8 )  and the solution, analogous to (4.9), is 

It will be observed that (5 .6 )  and (5 .7 )  differ from their counterparts (4 .7)  and (4.8) 
for laminar model B only through the inclusion of ti, which is directly proportional to 
the curvature of the velocity profile on the tube axis. With a parabolic profile 
t ( 7 )  = 47%- 1 ,  and t," = 1.  We may anticipate that t," will reduce with increasing flow 
Reynolds number: expressions for tg will now be derived from published relationships 
for turbulent flow. 

5.2.1. Velocity profiles. Dimensional arguments about the nature of the flow near 
the tube axis lead to the velocity defect law 

cv,-u,/.* = 4(7L (5.9) 

where the friction velocity is u* = (r , /p) l  = a(+ f )+, r, is the shear stress on the tube 
wall and f the friction factor, for which we use the expressiont 

f - f  = 3.5logRe-2.6. (5.10) 

Equation (5.10) gives an excellent description of the universal resistance law for 
smooth pipes for Re = pUD/,u up to lo9 and has the advantage of being explicit in f. 

t," is obtained from the definition (5.5) of t ( 7 )  and (5.9), which give 

-9.40" = 2 q t ;  = AZU*, (5.1 1 )  

where A, is a dimensionless constant evaluated from $(7). Using the velocity defect 
law at the radius where the local and mean velocities are equal, the law being valid 
over virtually the whole tube, gives the relation 

u, = U+h,u*, (5.12) 

where A, is dimensionless and is evaluated from $(a). Combining (5.11) and (5.12) 
gives 

t," = ( 1  - a/&) h2/2h,. 

t 'log' denotes 'loglo' in this paper. 

(5.13) 



Gas bubble rising in $owing liquid 509 

Several forms have been suggested €or $(r)- Reichardt’s (1951) theory, which des- 
cribes experimental velocity profiles very well, expressed the eddy viscosity as a 
polynomial to give 

(V, - u)/u* = 2.5 In [( 1 + 2 r 2 ) / (  1 - r2)] .  (5.14) 

Integrating (5.14) across the tube gives A, = 3.751113 = 4.12, and differentiating 
(5.14) twice gives, from (5.11), A, = 15; both values are in good agreement with 
Townsend’s (1976) and Hinze’s (1976) analyses of published data. For small 7, (5.14) 
has the parabolic form 

u = u,- 7.5u*?p, (5.15) 

showing that Reichardt’s profile has zero velocity gradient on the tube axis; this 
parabolic constituent is the dominant feature of turbulent velocity profiles over a 
large region of the flow (de Moraes 1977). Figure 3(b) compares Reichardt’s profile 
with Pai’s (1957) equation 

u = v,[l - y q -  (1 -y)72”], (5.16) 

where y and n may be determined by comparing (5.16) with (5.9). Large values of 
n are found to be necessary if turbulent data are to be described adequately, for 
example n = 33.5 when Re = lo4, and as a result the influence of the term yzn in 
(5.16) is confined to the neighbourhood of the wall. N7e observe then that the exact 
solution of (2.1) used in the laminar theory represents a parabolic velocity profile 
with a superimposed irrotational perturbation while the simplified turbulent theory 
uses the same irrotational perturbation to disturb a turbulent profile whose dominant 
constituent is parabolic. In a sense the simplified theory may be viewed as an appli- 
cation of the exact solution for laminar flow over most of the tube, so that the manner 
in which the vorticity is convected around the slug seems likely to be well described 
by this approach, particularly near the tube axis. 

5.2.2. Evaluation and comparison with (1 .1 ) .  On using (5.10)-(5.14) together with 
the values for T3, and T2, from $4,  and on rewriting in terms of D, (5.8) becomes 

ri, = u - [log Re + 0.0891 
log Re - 0.74 

The coefficient of fl in (5.17) simply expresses the dependence of V,/o on Re. Since 
Re = (fl/(gD)*) (g*D#p/,u), (5.17) may be regarded as a relationship between V,/(gD)* 
and v/(gD)* for a given value of N, = g*Dgp/,u. 

Figure 4 shows the form of (5.17) for Nf = 12000, the value appropriate to the 
experiments of Nicklin et al. (1962). The form is very nearly, but not quite, linear. 
Thus with the coefficients C, and C, suitably chosen, ( 1 . 1 )  can provide a good descrip- 
tion of (5.17) but values for these coefficients could differ slightly depending on (i) 
the range of B/(gD)* over which (1 .1)  and (5.17) are fitted to each other, (ii) the degree 
of inaccuracy in the representation considered acceptable, and (iii) the value of N,. 
These factors may account for the differences in experimental values commented 
upon by Nobel (1972). For values of fl/(gD)* ranging from 0.6 to 4.9, i.e. for Re > 8000, 
Nicklin et al. (1962) found 

U, = 1 . 2 0  + 0*35(gD)*. (5.18) 

They observed that the coefficient 1.2 is close to the ratio q/a = 1.22 obtained from 
a one-seventh power-law profile. The slug velocity in stagnant liquid, V,, = 0*35(gD)*, 
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profilos, (5 .17);  ( b )  solution of Nicklin et al., (5.18); for their data, N ,  = 12000. 
FIGURE 4. Slug velocity Us as a function of flow velocity from (a )  the full solution for turbulent 

is the best available experimental value (Stewart & Davidson 1967). Figure 4 shows 
excellent agreement between (5.17) and (5.18) and thus confirms the simple inter- 
pretation given by Nicklin et al. that the slug velocity is the sum of the liquid velocity 
on the tube centre-line and the characteristic velocity of the slug in stagnant liquid. 

Figure 5 shows the variation of (G- &,)/a with 8 / (gD)+ obtained from the full 
solution (5.17), again with N, = 12000 and the asymptotes of (5.17) from the expan- 
sions for Cr, in (3.11) and (3.12). The two asymptotes intersect a t  a/ (gD)& = 2 and 
together provide excellent descriptions of the full solution over the complete range 
of u/(gD)&. Thus, for e/(gD)* < 2 

v, = u"opRe+O-2i] log Re - 0.74 + 0*347(gD)4, (6.19) 
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FIGURE 5. Results for turbulent models A and B, with N t  = 12000. 

Model Line Equations 

A _.._ ( 5 . 2 ) ,  (5.3), (5.4) and (5.12), U, + 0 
B __ (5.17) 

_-- 
_._ 

(5.19), asymptote to model B for o / ( g D ) s  < 2 
(5.20), asymptote to model B for g / ( g D ) i  > 2 

while for u/(gD)B > 2 

logRe+0.089] [( U 0.083 ) # + A  (L 
log Re - 0.74 i-(gD)3 m l o g  Re - 0.74 3 (gD))log Re- 0.74 

(5.20) 

When compared with (5.17), (5.19) shows that, for the turbulent profile as for the 
laminar, there is a slight enhancement of the coefficient of g for values of O/(gD)) < 2; 
but the effect is smaller than for the laminar theory, the maximum increase in C, 
being only about 3 % for Re N 4 x 1 0 3 .  Equation (5.19) gives the dependence of C, 
on Re for this low range of U/(gD)l. For O/(gD)i > 2, (5.20) describes the variations 
in C, with U/(gD)*, although a t  high values of o / ( g D ) t  the first term in (5.20) is 
dominant; that  term is moreover identically equal to V,. We stress again that, while 
(5.19) and (5.20) are useful for interpretative purposes, the full solution in (5.17) is 
easily evaluated. 

Figure 5 also shows the results for turbulent model A based on the exact solution 
of (2.1) for a particular value of U ,  determined by choosing a to satisfy (5.4) and (5.12) 
so as to match the velocity profile with known turbulent profiles over the central part 
of the tube. The fact that  its results are similar to those obtained for the simplified 
theory of turbulent model B provides further support for that  approach. 

6. Comparison of theory and experiment 
Since there are few published data on inertia-controlled slugs with laminar flow of 

the liquid, we carried out experiments to measure the slug velocity and the radius of 
curvature a t  the nose in the laminar region 0 < Re < 2100 and the transition region 
2100 < Re < 4000. 

There were two requirements, namely (i) that the liquid flow should give the above 
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ranges of Reynolds numbers, and (ii) that the slug motion should be inertia-controlled, 
which for stagnant liquid, as noted in $1, implies Nf > 300 and Eo > 100. These 
conditions were met by using a mixture of 48% by weight glycerol with water in a 
tube of diameter 51.4 mm. For this mixture, Nf =_7 600, Eo N 420 and the ranges 
of liquid velocities and Reynolds numbers were 0 < U < 37 cm/s and 0 < Re < 4000; 
for water the corresponding values were N,= 36500, Eo = 357, 0 < u < 40 cm/s and 
0 < Re < 20700. 

The tube was 4 m long. The liquid entered a t  the bottom through a calming section 
30 cm long packed with 5 mm glass ballotini. Slugs of air were injected just above 
the calming section; 2.5 m further up, the slug velocity was obtained from an electronic 
measurement of the interval between the times a t  which a slug activated two im- 
pedance probes separated by a distance of 30 cm. The results were checked in a few 
cases by cine photography of a rising slug. 

For each choice of liquid velocity, 10 readings of the slug velocity were usually 
taken, but if the data showed some variability, as for very low liquid velocities, 20 
or 30 readings were taken. The range of standard deviations was from about 0.7% 
to less than 3% for high and low liquid velocities respectively. 

With stagnant liquid, the standard deviation was very small, 0.16%) and the 
measured slug velocity, 24.63 cm/s, was in excellent agreement with (4.11), from 
which, with g = 0, V,, = 24.64 cm/s. A typical middle range reading for the glycerol- 
water mixture was 0 = 10.09 & 0.03 cm/s, Us = 43.49& 0-19 cm/s, C, = 1-87 & 0.03 
and Re = 1080. 

The radius of curvature a of the nose of a slug was measured by tracing a projected 
photograph. For each liquid velocity, three individual slugs were photographed. 
The refraction effect was minimized by encasing a section of the tube in a square 
Perspex box filled with glyceroI. Figure 2 shows that the change of slug shape pre- 
dicted by the theory is reflected in the measurements: the radius of curvature a t  the 
nose is reduced by liquid flow, the data being in reasonable agreement with model B.  

Experimental measurements of the slug velocity are plotted in figure 6 as the di- 
mensionless slug velocity V,/(gD)* us. the dimensionless liquid velocity V/(gD)*. 
Theory and experiment for the laminar case are seen to agree well when the parabolic 
profile is established experimentally, i.e. a t  low velocities in the glycerol-water 
mixture. As a laminar regime occurs for Re < 2100 and since Re = N,D/(gD)*, we 
should expect that data obtained in this regime would follow (4.11) up to (i) 

O/(gD)* < 0.28 

with a 48% glycerol-water mixture, for which Nf = 7600, and (ii) up to 

c/(gD)* < 0.06 

with water, for which 3; = 36500. However, figure 6 shows that the experimental 
points deviate from (4.11) at values of O/(gD)t lower than these expectations, owing 
to entrance effects, though the agreement is good when O/(gD)* < 0.1. As described 
earlier, the liquid entered the tube through a calming section which produced a flat 
velocity profile. The ratio (entry length)/D for laminar flow in circular tubes is pro- 
portional to Re, the constant of proportionality being variously quoted as 0.08 
(theoretical, White 1974) or 0-028 (experimental, Govier & Aziz 1972); it follows that 
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FIGURE 6. Dimensionless slug velocity us. dimensionless liquid velocity. 

0. airlwater; 0, air/48 % by weight glycerol-water. 

measurements of slug velocity a t  2-5 m above the liquid distributor allowed a full 
development of a laminar profile only at  low Re. This explains why the laminar theory 
and experiment agree only a t  low liquid velocities in this apparatus. 

I n  $ 2  it was noted that the slug motion is inertia-controlled provided Re, > 105 
and that the boundary layers are then expected to be thin. For flowing liquid, 
Re, > 105 implies, using (4.12) and (5.17), that 

(2*16+ 1)Re+0.35Nf > 105, (6.1) 

where (2.16 --f 1) implies a range of coefficients. There is the additional constraint 
Eo > 100 as for stagnant liquid. From (6.1) it follows that the slug is inertia-controlled 
for increasing viscosities as the liquid flow increases. In  particular, if the upward flow 
is turbulent, it is sufficient that Eo > 100 for (5.17) to be applicable. 

Provided these constraints are satisfied, the slug velocity is independent of vis- 
cosity for laminar flow. But for turbulent flow, owing to the presence of Re in (5.17), 
a plot like figure 6 would give a family of lines with flf as a parameter. 

Figure 6 shows excellent agreement between slug velocity data for turbulent flow 
and (5.19), which is an asymptote of (5.17). Nicklin et al. (1962) obtained a good fit 
with (5.18) for data over a much larger range of Re than that shown in figure 6. The 
acceptance of (5.18) in the literature, and the excellent agreement between (5.17) 
and (5.18) shown in figure 4, therefore confirm an agreement between theory and 
experiment for essentially all liquid velocities of common interest. 

One of us (F.F. de M.) would like to thank the University of Maring&, Brazil, and 
the British Council for support during the course of this work. 
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